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Semi-Conductor Scaling
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GSM Digital Baseband Evolution
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* Die Size: 13.3mm?
* 5.9M bits SRAM
* 1.9M gates of logic
> eFuse (dielD) and
repair
» ARM7 uC
> LEAD3 DSP (250K
gates)
» MegaCell (300K gates)
» ASIC gates (1.3M
gates)

* Volume Production
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STRUCTURED LAYOUT (45 nm)

Design Data

* Vertical poly gates only

* GHOST Poly

* Poly not required to overlap
contact

* Max Xstor width change within
ACTIVE



Si Technology Roadmap
Issues/Trends

* Design for Manufacturing Variations
* Analog/RF & MEMS SOC Integration

* Co-Development of Process, Design
Technigues and Architecture

* CMOS processes customized to the
application

* Relentless focus on power reduction.
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Deep Submicron Processes Demand
Enhanced Power Management
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Power Domain Partitioning

* Main Power
Domains
* DSP
* Data Memory
* Modem Logic

* Others

* Power Mhgmt
Control

* MCU
* DPLL

Analog
e 1O

“Power Power
Domain#1 | Domain #2

DSP

Domain #3

ASIC




Approaches to Power Reduction
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Cumulative Yield
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Why Single-Chip Phone?
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"Integration is like gravity”

— Already happened in hard-
disk drives, ADSL, etc

— Not a single example of
reversal

“$20 phones”

Large untapped market in
India and China

More “real estate” space for
advanced features -
Better reliability fpr
— Today, more than half of e

the total components on a

board are analog RF
components

Longer talk time _ '

Old Platform



Typical Cell-Phone Block
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Area and cost must be reduced - Integrate !



What about SIP Integration?

* Monolithic integration of DRAM would result in
significant cost increase due to the need for
additional mask levels.

* Memory modules are highly reusable so modularity
makes sense.

* No yield impactissue due to in-package
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DRAM Hi-Perf. Logic Integrated Logic +
Chip Chip eDRAM
S0mm? S0mm? 100mm?
SLM GLM GLM + DRAM Mask Levels
o SEARY 26 mask levels 26 mask levels 32 mask levels
ahl Chip Cost: Chip Cost:
100mm? x 26 mask levels 100mm? x 32 mask levels
| 23% Higher Cost I
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Conventional Transceivers

* RF transmitters in commercial wireless applications are
traditionally based on charge-pump PLL’s and IQ
upconversion mixers

* RF receivers use continuous-time mixing, filtering and
amplification

* Design flow and circuit technigues are analog intensive

* Technology incompatible with modern digital
Processors

— Low-voltage deep-submicron CMOS
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DRP/SoC Proven in Many Products
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Single-Chip GSM Radio
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New Paradigm

In @ deep-submicron CMOS
process, time-domain resolution
of a digital sighal edge transition
IS superior to voltage resolution

—of an analog signal



All-Digital PLL vs. Charge-pump
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Deep-Submicron CMOS Rules

 Exploit:
— Fast switching characteristics of MOS transistors

— Small device geometries and precise device
matching

— High density of digital logic: 250 kgates/mm? in 90-
nm CMOS

— High density of SRAM memory: 1 Mbits / mm? in 90-
nm CMOS

* Avoid:
— Biasing currents for analog circuits
— Reliance on voltage resolution

— Nonstandard devices not needed for memory and
digital logic



SoC Drives Cost Reduction

* SoC Integration Includes:
— Digital baseband
- SRAM
— Power management
— Analog
- RF
— Processors & Software

* The DRP technology enables digital
implementation of traditional analog
RF functions in standard CMOS

* Most advanced process technology
used to maximize integration while
minimizing cost

- 90nm (shipping)
— 65nm (mature design)
— 45nm and beyond (preliminary)




Digital Radios Offer Many Benefits

Why Digital?
(  Process We can now clock systems at
Capability —/ radio frequencies
/7/ \ V¥ Digital technology takes advantage of
. Entittement ) advanced logic capability (and
N ~/ leverages the wafer process technology

/\V \?,/
(:Nﬁd?ﬁﬁgﬁ-@a% Digital systems scale with
\ / lithography and are easy to
\§ = migrate
< Performance \> Performance improves with new
technology, the job keeps getting

investment)

v 4
AN ) 4

> -~ easier
~
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( Cost ) Digital radios offer excellent
AN 7 performance, low power consumption,
N J

~_ high manufacturing yield, and low cost
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MEMS Integration

* MEMS Integration will also enable products for
ubiquitous computing, sensing and perception
— accelerometers
— pressure sensors
— rate gyros
— integrated microphones
— resonators
— RF switches and tuneable capacitors
— optical switches and phase modulators,
— micro-fluidic pumps and valves
— displays
* The Digital Mirror Device (DMD) is an example of
iIntegrated MEMS



How the DMD
Works




How the DMD




How the DMD




How the DMD Works




How the DMD Works

') Projection Lens

Light
Absorber




MEMS Integration

Today
*HDTV

*Front Projection Products
*Large Screen Movie Theaters

Tomorrow

and PDAs
*3D imaging for medical
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Technology in the Next

Decade

Moore’s Law is
predicted to stagnate
toward the end of the
next decade ...




Technology in the Next

Decade

Moore’s Law is
predicted to stagnate
toward the end of the
next decade ...

... but SOC Integration
has the potential to
continue IC cost
reduction and to
perpetuate growth of
products for
ubiquitous computing,
perception & sensing.




Systems on Si

System Functionality

>

, System-on-Si
Integration




